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Let �A be a finitely primitive subshift of finite type over a countable alphabet. For
suitable potentials f : �A → R we can associate an invariant Gibbs equilibrium state
µt f to the potential t f for each t ≥ 1. In this note, we show that the entropy h(µt f )
converges in the limit t → ∞ to the maximum entropy of those invariant measures
which maximize

∫
f dµ. We further show that every weak-* accumulation point of the

family of measures µt f has entropy equal to this value. This answers a pair of questions
posed by O. Jenkinson, R. D. Mauldin and M. Urbański.

KEY WORDS: Gibbs state, equilibrium state, ground state, maximizing measure,
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1. INTRODUCTION

Let σ : �A → �A be a subshift of finite type on a countable alphabet I ⊂ N, and
let f : �A → R be uniformly continuous. Under suitable conditions (to be made
precise below) it may be shown that f admits a unique σ -invariant Gibbs state µ f .
In this note we study the behaviour of families of invariant Gibbs states (µt f )t≥1 in
the limit t → ∞. Our result provides a complete characterisation of the limiting
behaviour of the entropy h(µt f ), and extends previous results known in the case
where the alphabet I is finite. In particular, we answer two questions posed by
O. Jenkinson, R. D. Mauldin and M. Urbański in a previous investigation of this
topic. (6).

In the thermodynamic interpretation, our parameter t corresponds to an in-
verse temperature of a system, and the measure µt f corresponds to the equilibrium
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of the system at temperature 1/t . The limit t → ∞ is therefore a zero temperature
limit, and accumulation points of the measures µt f constitute ground states. The
aim of the present note is to show that the entropy µt f is continuous in the zero
temperature limit, in the sense that h(µ∞) = limt→∞ h(µt f ) whenever µ∞ is an
accumulation point at infinity of the measures µt f .

The history of results of this type in the finite-alphabet case is somewhat
convoluted; results analogous to those in the present paper and in (Ref. 6) were
proved independently on a number of occasions, e.g. (Refs. 1–3, and 5). The
history of these and related results is discussed briefly in (Ref. 4, Sec. 5).

2. DEFINITIONS AND STATEMENT OF THEOREM

In this section we review some necessary background from the thermody-
namic formalism of countable-alphabet subshifts of finite type. Our reference for
this section is the work of R.D. Mauldin and M. Urbański(7) (Sec. 2) (but see also
(Refs. 8,11, and 12)). We then give a formal statement of our results.

Let I ⊆ N be a countably infinite set, and let A: I × I → {0, 1} be a square
matrix. We define the shift space �A associated to A to be the set

�A := {x = (xn)n≥1 : xn ∈ I and A(xn, xn+1) = 1 for all n ≥ 1},
and define the shift map σ : �A → �A by

σ [(xn)n≥1] = (xn+1)n≥1 .

When (i1, . . . , im) ∈ Im we define the corresponding cylinder set by

[i1, . . . , im] := {x = (xn)n≥1 ∈ �A: x j = i j for all 1 ≤ j ≤ m}.
We then define a topology on �A by declaring every cylinder set to be open. Given
f : �A → R and n > 0, define

varn f := sup
(i1,...,in )∈In

sup
x,y∈[i1,...,in ]

| f (x) − f (y)| .

We say that f has summable variations if the quantity | f |var = ∑∞
n=1 varn f is

finite. Note that if | f |var < ∞ then f is continuous, but need not be bounded.
For n > 0 and x ∈ �A, we use the abbreviation Sn f (x) to denote the ergodic sum∑n−1

j=0 f (σ j x).
We denote the set of σ -invariant Borel probability measures on �A by Mσ .

We equip Mσ with the following weak-* topology: we say that (µn)n≥1 converges
weakly-* to µ if and only if

∫
f dµn → ∫

f dµ for every bounded continuous
f : �A → R. In our case, an equivalent condition is that µn(B) → µ(B) for all
cylinder sets B.
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Given f : �A → R, we define the maximum ergodic average of f to be the
quantity

β( f ) = sup

{∫
f dν: ν ∈ Mσ

}

.

When
∫

f dµ = β( f ) for µ ∈ Mσ , we say that µ is a maximising measure
for f . We denote the set of all maximising measures for f by Mmax( f ). The
study of maximising measures is a topic of substantial recent research interest:
for further information on this topic we direct the reader to the survey article
of O. Jenkinson. (4)

For the purposes of this article, we will define the pressure of a continuous
function f : �A → R to be the quantity

P( f ) = sup

{

h(ν) +
∫

f dν: ν ∈ Mσ and
∫

f dν 	= −∞
}

, (1)

where h(ν) denotes the entropy of the measure ν (see e.g. (Ref. 13)). Some
alternative formulations of the pressure may be found in (Ref. 7, Sec. 2).

We say that a measure µ ∈ Mσ is an equilibrium state for f if P( f ) =
h(µ) + ∫

f dµ, and say that µ is an invariant Gibbs measure for f if µ ∈ Mσ

and there is a real constant Q > 1 such that

Q−1 ≤ µ ([x1, . . . , xn])

eSn f (x)−n P( f )
≤ Q

for every n > 0 and x ∈ �A.
When I is finite and σ is topologically mixing, it is well known that every

Hölder continuous f possesses a unique invariant Gibbs measure, and that this
measure is also the unique equilibrium state for f (9,10). When I is infinite, it may
be the case that certain Hölder continuous functions fail to have invariant Gibbs
states. To ensure the existence of invariant Gibbs states we impose the following
additional condition on f .

Definition 2.1.
We call a continuous function f : �A → R summable if it satisfies the condi-

tion

∑

i∈I
exp

(

sup
x∈[i]

f (x)

)

< ∞.

We write SA for the set of all summable functions f : �A → R which satisfy the
additional condition | f |var < ∞.

In the case where I is infinite, the existence of invariant Gibbs states requires
a further condition on A. We say that the matrix A is finitely primitive if there
exist an integer N and a finite set J ⊆ I such that for each a, b ∈ I we can find
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(i1, . . . , iN ) ∈ J N such that the cylinder set [a, i1, . . . , iN , b] ⊆ �A is nonempty.
R. D. Mauldin and M. Urbański proved the following theorem (see (Ref. 7 and
8)):

Theorem 1. (Mauldin-Urbański) If g ∈ SA and A is finitely primitive, then
P(g) is finite and g has a unique invariant Gibbs measure µg. This measure
satisfies

e−4|g|var ≤ µg ([x1, . . . , xn])

eSn g(x)−n P(g)
≤ e4|g|var (2)

for every x ∈ �A and n > 0.

In fact, the above theorem was proved under the stronger assumption that
varng = O(θn) for some 0 < θ < 1, but as remarked in (Ref. 6) the proof gener-
alises without difficulty. The requirement of finite primitivity was later shown by
O. Sarig to be necessary as well as sufficient (12).

It should be noted that while every g ∈ SA has finite pressure and possesses
an invariant Gibbs state, in some cases this invariant Gibbs state may have infinite
entropy, and hence is not an equilibrium state in the sense defined above. However,
Mauldin and Urbański were able to show the following:

Proposition 1. Let g ∈ SA and suppose that the additional condition

∑

i

sup
x∈[i]

|g(x)| exp

(

sup
x∈[i]

g(x)

)

< ∞ (3)

holds. Then the invariant measure µg satisfies h(µg) < ∞ and
∫ |g| dµg < ∞,

and µg is an equilibrium state for g in the sense that h(µg) + ∫
g dµg = P(g).

We will see in the following section that if f ∈ SA, then for each t > 1 the
function t f satisfies condition (3) above automatically. Hence the map t 
→ µt f

which will be studied in this article is well-defined, and for every t > 1 the measure
µt f has finite entropy and is both an equilibrium state and a Gibbs state.

O. Jenkinson, R.D. Mauldin and M. Urbański showed in (Ref. 6) that the
family of measures (µt f )t≥1 has at least one accumulation point in Mσ , and
showed that every accumulation point must be a maximising measure for f . They
then asked whether the entropy of these accumulation points could be characterised
either as the supremum of the entropies of the maximising measures, or as the
limit of the entropies h(µt f ). In this note we prove the following:

Theorem 1. Let σ : �A → �A be a finitely primitive subshift of finite type, and let
f ∈ SA. For each t > 1, let µt f be the unique Gibbs equilibrium state associated
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to the potential t f , and let µ∞ be any accumulation point at infinity of (µt f )t≥1.
Then,

h(µ∞) = lim
t→∞ P(t f − tβ( f )) = lim

t→∞ h(µt f ) = sup
ν∈Mmax( f )

h(ν).

This theorem constitutes a positive answer to Questions 1 and 2 in (Ref. 6).

3. PROOF OF THEOREM 1

It is convenient to break up the proof of Theorem 1 into several separate
statements. In particular, the theorem is obtained by combining Lemmata 3.1 and
3.5 below. We include some observations from (Ref. 6).

Throughout this section we assume that the matrix A is finitely primitive and
that f ∈ SA.

Lemma 3.1. For each t > 1 we have

∑

i

sup
x∈[i]

|t f (x)| exp

(

sup
x∈[i]

t f (x)

)

< ∞,

so that the conclusions of Proposition 1 apply to µt f .

Proof: Let t > 1. Since f ∈ SA it is clear that there exists Ct > 0 such that

sup
i

sup
x∈[i]

|t f (x)| e(t−1) supx∈[i] f (x) ≤ Ct .

Hence,

∑

i

sup
x∈[i]

|t f (x)| exp

(

sup
x∈[i]

t f (x)

)

≤ Ct

∑

i

exp

(

sup
x∈[i]

f (x)

)

< ∞.

Lemma 3.2. The maps t 
→ h(µt f ) and t 
→ P(t f − tβ( f )) are decreasing and
bounded below on the interval (1,∞), and satisfy

lim
t→∞ h(µt f ) = lim

t→∞ P(t f − tβ( f )) ≥ sup
ν∈Mmax( f )

h(ν).

Proof: Recall from (Ref. 7, Sec. 2) that the map t 
→ P(t f ) is analytic, and that
its first and second derivatives admit the characterisations

P ′(t f ) =
∫

f dµt f ≤ β( f )
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and

P ′′(t f ) = lim
n→∞

1

n

∫ (

Sn

[

f −
∫

f dµt f

])2

dµt f ≥ 0.

Note also that P(t f − tβ( f )) = P(t f ) − tβ( f ) as a consequence of (1). We have
P ′(t f − tβ( f )) = P ′(t f ) − β( f ) = ∫

f dµt f − β( f ) ≤ 0 for every t > 1, and so
P(t f − tβ( f )) is decreasing. To see that t 
→ h(µt f ) is decreasing we note that
for every t > 1,

h(µt f ) = P(t f ) − t P ′(t f )

so that

h′(µt f ) = −t P ′′(t f ) ≤ 0.

Clearly h(µt f ) ≥ 0 for all t > 1, and P(t f − tβ( f )) ≥ 0 by the variational
principle (1). Since both maps are decreasing, we conclude that limt→∞ h(µt f )
and limt→∞ P(t f − tβ( f )) both exist. It follows that the limit

lim
t→∞ t P ′(t f ) − tβ( f ) = lim

t→∞(P(t f − tβ( f )) − h(µt f ))

exists also. Since P(t f − tβ( f )) is convergent and monotone, the integral∫ ∞
t=2

∣
∣P ′(t f ) − β( f )

∣
∣ dt must be finite; it follows that limt→∞ t P ′(t f ) − tβ( f )

cannot be nonzero, and so

lim
t→∞ h(µt f ) = lim

t→∞ P(t f − tβ( f ))

as required. To complete the proof, we observe that P(t f − tβ( f )) ≥
supν∈Mmax ( f ) h(ν) for all t > 1 as a consequence of the variational principle (1).

Lemma 3.3. Let f ∈ SA. Then,

lim
t→∞ t−1 P(t f ) = β( f ).

Proof: This follows from Lemma 3.2 and the relation P(t f ) = P(t f − tβ( f )) +
tβ( f ).

Lemma 3.4. Let µ∞ be an accumulation point at infinity of (µt f )t>1 in the
weak-* topology. Then µ∞ is a probability measure and is maximising for f .

Proof: See (Ref. 6, Theorem 1).
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Lemma 3.5. Let µ∞ = limk→∞ µtk f be an accumulation point at infinity of
(µt f )t>1 in the weak-* topology. Then,

h(µ∞) = lim
t→∞ h(µt f ) = sup

ν∈Mmax( f )
h(ν).

Proof: By Lemmata 3.2 and 3.4 we have

h(µ∞) ≤ sup
ν∈Mmax( f )

h(ν) ≤ lim
t→∞ h(µt f ),

and so it suffices to establish

lim
t→∞ h(µt f ) ≤ h(µ∞).

For K ⊆ I and n > 0, we use the symbol K̂n to denote set of all n-tuples
(i1, . . . , in) ∈ Kn such that the cylinder [i1, . . . , in] ⊆ �A is nonempty. For each
n > 0 we define

An = {[i1, . . . , in] ⊂ �A: (i1, . . . , in) ∈ În}.
Clearly each An is a countable measurable partition of �A.

For x ∈ [0, 1] define φ(x) = −x log x when x 	= 0, and φ(0) = 0; note that
φ is continuous. Given ν ∈ Mσ and n > 0, we let

H (ν | An) =
∑

(i1,...,in )∈In

φ (ν ([i1, . . . , in])) .

Using standard facts from entropy theory, the entropy h(ν) of an invariant measure
ν ∈ Mσ is equal to h(ν) = infn≥1

1
n H (ν | An). We claim that for each n > 0,

lim
k→∞

H
(
µtk f | An

) = H (µ∞ | An) . (4)

Since supx∈[i] f (x) → −∞ as i → ∞, we may choose a finite set J ⊂ I such
that

4| f |var − nβ( f ) + 1 + (n − 1) sup f + sup
i∈I\J

sup
x∈[i]

f (x) < 0 (5)

and

4| f |var + nβ( f ) + 1 ≤ sup
(i1,...,in )∈În\Ĵ n

sup
x∈[i1,...,in ]

|Sn f (x)| (6)

and

sup
(i1,...,in )∈În\Ĵ n

(

sup
x∈[i1,...,in ]

|Sn f (x)| esupx∈[i1 ,...,in ] Sn f (x)

)

≤ 1. (7)
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It is then easily seen that as t → ∞,

⎛

⎝te4t | f |var−ntβ( f )+t
∑

i∈I\J
e(t−1) supx∈[i] f (x)

⎞

⎠

(
∑

i∈I
e(t−1) supx∈[i] f (x)

)n−1

→ 0,

as a consequence of (5) above. By Lemma 3.3, we may choose T > 2 such that
t > T implies

tnβ( f ) − t ≤ n P(t f ) ≤ tnβ( f ) + t. (8)

Let t > T and (i1, . . . , in) ∈ În \ Ĵ n . Applying inequalities (2), (6) and (8), we
obtain

− log
(
µt f ([i1, . . , in])

) ≤
(

4t | f |var + n P(t f ) −t sup
x∈[i1,...,in ]

Sn f (x)

)

≤ t

(

4| f |var + nβ( f ) + 1 + sup
x∈[i1,...,in ]

|Sn f (x)|
)

≤ 2t sup
x∈[i1,...,in ]

|Sn f (x)| .

Combining this with inequalities (2), (7) and (8), we deduce that for every t > T ,

∑

(i1,...,in )∈În\Ĵ n

φ(µt f ([i1, . . . , in]))

=
∑

(i1,...,in )∈În\Ĵ n

− log µt f ([i1, . . . , in]) µt f ([i1, . . . , in])

≤ 2t
∑

(i1,...,in )∈În\Ĵ n

sup
x∈[i1,...,in ]

|Sn f (x)| µt f ([i1, . . . , in])

≤ 2te4t | f |var−n P(t f )
∑

(i1,...,in )∈În\Ĵ n

sup
x∈[i1,..,in ]

|Sn f (x)| et supx∈[i1 ,.,in ] Sn f (x)

≤ 2te4t | f |var−tnβ( f )+t
∑

(i1,...,in )∈În\Ĵ n

e(t−1) supx∈[i1 ,...,in ] Sn f (x)

≤ 2nt

⎛

⎝e4t | f |var−tnβ( f )+t
∑

i∈I\J
e(t−1) supx∈[i] f (x)

⎞

⎠

(
∑

i∈I
e(t−1) supx∈[i] f (x)

)n−1
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so that

lim
t→∞

⎛

⎝
∑

(i1,...,in )∈În\Ĵ n

φ
(
µt f ([i1, . . . , in])

)
⎞

⎠ = 0. (9)

A similar, simpler argument using inequalities (2), (5) and (8) shows that when
(i1, . . . , in) ∈ În \ Ĵ n , one has

µ∞ ([i1, . . . , in]) = 0,

from which it follows that

H (µ∞|An) =
∑

(i1,...,in )∈Ĵ n

φ (µ∞ ([i1, . . . , in])) .

Combining this with (9) above, we deduce that to prove (4) we need only show
that

lim
k→∞

⎛

⎝
∑

(i1,...,in )∈Ĵ n

φ(µtk f ([i1, . . . , in]))

⎞

⎠ =
∑

(i1,...,in )∈Ĵ n

φ(µ∞([i1, . . . , in])).

By weak-* convergence one has limk→∞ µtk f ([i1, . . . , in]) = µ∞([i1, . . . , in]) for
all cylinder sets; since φ is continuous and the sum is finite, the required conver-
gence follows. The claim (4) is proved.

To complete the proof of the Lemma, we suppose for a contradiction that
h(µ∞) < limt→∞ h(µt f ). Choose ε > 0 such that h(µ∞) ≤ limt→∞ h(µt f ) − 3ε,
and choose N > 0 such that 1

N H
(
µ∞|AN

) ≤ h (µ∞) + ε. Using (4), we deduce
that for all sufficiently large k > 0,

h(µtk f ) ≤ 1

N
H

(
µtk f |AN

) ≤ 1

N
H

(
µ∞|AN

) + ε

≤ h(µ∞) + 2ε ≤ lim
t→∞ h(µt f ) − ε.

Taking the limit as k → ∞ yields the required contradiction.

ACKNOWLEDGMENTS

The author gratefully acknowledges the hospitality and financial support of
the Erwin Schrödinger Institute for Mathematical Physics, at which this research
was conducted. The author would also like to thank O. Jenkinson for his careful
reading of an earlier version of this article.



324 Morris

REFERENCES

1. Z. Coelho, Entropy and ergodicity of skew-products over subshifts of finite type and central limit
asymptotics, PhD thesis, Warwick University (1990).

2. J.-P. Conze and Y. Guivarc’h, Croissance des sommes ergodiques, unpublished manuscript
(c. 1993).

3. G. Contreras, A. Lopes and P. Thieullen, Lyapunov minimizing measures for expanding maps of
the circle, Ergod. Theory Dynam. Systems 5:1379–1409 (2001).

4. O. Jenkinson, Ergodic optimization, Discrete Contin. Dyn. Syst. 15:197–224 (2006).
5. O. Jenkinson, Geometric barycentres of invariant measures for circle maps, Ergod. Theory Dynam.

Systems 21:511–532 (2001).
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